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Folding the Regular Nonagon

Robert Geretschl�ager, Bundesrealgymnasium, Graz, Austria

Introduction

In the March 1997 of Crux [1997: 81], I presented a theoretically precise

method of folding a regular heptagon from a square of paper using origami

methods in an article titled \Folding the Regular Heptagon". The method

was derived from results established in \Euclidean Constructions and the

Geometry of Origami" [2], where it is shown that all geometric problems that

can be reduced algebraically to cubic equations can be solved by elementary

methods of origami. Speci�cally, the corners of the regular heptagon were

thought of as the solutions of the equation

z7 � 1 = 0

in the complex plane, and this equation was then found to lead to the cubic

equation

�3 + �2 � 2� � 1 = 0;

which was then discussed using methods of origami. Finally, a concrete

method of folding the regular heptagon was presented, as derived from this

discussion.

In this article, I present a precise method of folding the regular nonagon

from a square of paper, again as derived from results established in [2].

However, as we shall see, the sequence of foldingsused is quite di�erent from

that used for the regular heptagon. As for the heptagon, the folding method

is once again presented in standard origami notation, and the mathematical

section cross-referenced to the appropriate diagrams.

Angle Trisection

For any regular n-gon, the angle under which each side appears as seen from

the mid-point is 2�

n
. Speci�cally, for n = 9, the sides of a regular nonagon

are seen from its mid-point under the angle 2�

9
. As is well known, this angle

cannot be constructed by Euclidean methods. Three times this angle (or 2�

3
)

can, however, and we note that it would be possible to construct a regular

nonagon by Euclidean methods, if it were possible to trisect an arbitrary an-

gle, or at least the speci�c angle 2�

3
. If this were the case, all that we would

have to do would be to construct an equilateral triangle, trisect the angles

from its mid-point to its corners, and intersect these with the triangle's cir-

cumcircle. Unfortunately however, as generations of mathematicians have

been forced to accept (although there are a few hold-outs still out there),
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angle trisection by Euclidean methods of straight-edge and compass is im-

possible, as is the construction of a regular nonagon.

The underlying reason for the impossibility of angle trisection by Euclid-

ean methods is the fact that straight-edge and compass constructions only

allow the solution of problems that reduce algebraically to linear or quadratic

equations. Angle trisection, however, involves the irreducible cubic equation

x3 �
3

4
x�

1

4
cos 3� = 0;

which derives from the well established fact (see for instance [1]) that

cos 3� = 4cos3 �� 3 cos�:

For the speci�c case at hand, where 3� = 2�

3
, the cubic equation in question

is

x3 �
3

4
x+

1

8
= 0:

As shown in [2], the solutions of this equation are the slopes of the common

tangents of the parabolas p1 and p2, whereby p1 is de�ned by its focus

F1
�
1

16
;�3

8

�

and its directrix

`1 : x = �
1

16
;

and p2 is de�ned by its focus

F2
�
0; 1

2

�

and its directrix

`2 : y = �
1

2
:

(It is not too di�cult to prove that this is indeed the case. Interested readers

may like to try their hand at doing the necessary calculations themselves.)

Finding the common tangents of two parabolas de�ned by their foci and di-

rectrices is quite straight-forward in origami, as it merely means making one

fold, which places two speci�c points (the foci) onto two speci�c lines (the

corresponding directrices). By this method, we will therefore now show how

to fold a regular nonagon.

A Step-by-step Description of the Folding Process

As is usually the case in origami, we assume a square of paper to be given. We

consider the edge-to-edge folds in step 1 as the x{ and y{axes of a system of

cartesian coordinates, and the edge-length of the given square as two units.

The mid-point of the square is then the origin M(0;0), and the end-points

of the folds have the coordinates (�1; 0) and (1;0), and (0;�1) and (0;1)

respectively.
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Steps 1 through 8 yield the foci and directrices of the parabolas dis-

cussed at the end of the second section of this article. The point C is the

focus F1 of parabola p1, B is the focus F2 of parabola p2, and the creases

onto which these two points are folded in step 9 are the directrices `1 and

`2. Since the coordinates involved are all arrived at by halving certain line

segments, it is quite easy to see that this is indeed the case.

The fold made in step 9 is then a common tangent of the parabolas,

and its slope is therefore cos 2�

9
. (This step, by the way, is the only one that

cannot be replaced by Euclidean constructions.) The point of steps 10 to 13

is then to �nd the horizontal line represented by the equation

y = � cos 2�

9
. This is the horizontal fold through point E, as the distance

between the vertical folds through points D and E is equal to 1.

We then obtain corners 2 and 9 of the nonagon (assuming the point with

coordinates (0;�1) to be corner 1) on this horizontal line by folding the unit

length onto this line from mid-point M in step 14. Step 15 therefore yields

the �rst two sides of the nonagon, and steps 16 and 17 complete the fold,

making use of both the radial symmetry of the �gure, and its axial symmetry

with respect to the vertical lineM1. Step 18, �nally, shows us the completed

regular nonagon.

The Folding Process

The diagrams follow the bibliography.

Conclusion

In the conclusion of Folding the Regular Heptagon, I declared myself as an

ardent Heptagonist. I have no qualms or reservations about declaring myself

an equally ardent Nonagonist now. Perhaps I will �nd some similar-minded

folk out there willing to join me in my quest of popularizing these heretofore

sadly neglected polygons.
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1.

Fold and unfold twice.

2.

q

A

Fold and unfold three times,

making crease marks each time.

�nal crease yields point A.

3.

q

A

Fold edge to point A and unfold.

4.

Refold edge to edge.
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5.

Fold and unfold both layers

at crease, then unfold.

6.

q
B

Fold and unfold twice, making

crease mark at point B.

7.

q B

q
C

Fold upper edge to crease, unfold,

then fold lower edge to new crease,

making crease mark at point C.

8.

q B

q
C

Mountain fold along creases.



215

9.

q

q

B

C

Fold so that B comes to lie on

crease, and previous fold on C.

10.

q
C

q
B

Unfold everything.

11.

q

D

Fold along crease and unfold, then

fold vertically through point D.

12.

q

E

Fold edge to edge and unfold

everything.
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13.

q
E

Fold horizontally through

point E and unfold.

14.

q
M

q q
9 2

1

Fold throughM such that point 1

lies on crease, unfold a repeat on

other side (points 1, 2, 9 are

corners of the nonagon).

15.

q q

q q

q
M

q q
9 2

1

Fold back twice such that marked

points come to lie on each other,

resulting folds are sides of the

nonagon.

16.

q
M

q

2

Fold throughM and 2.
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17.

Mountain fold lower layer using

edges of upper layer as guide lines.

Resulting folds are two more sides

of the nonagon. Open up fold from

step 16 and repeat steps 16 and 17

on left side, then fold throughM

and 2 once more. New folds are

new guide lines. Repeating process

completes the nonagon.

18.

The �nished nonagon.


