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Abstract: A tool based upon PDEs is developed to investigate the existence of
an Origami model satisfying given boundary conditions. A mapping giving an
Origami model is characterized by the condition of local rigidity, corresponding
to a first-order system of nonlinear PDEs, which is solved subject to the prescribed
boundary conditions. The variational approach is to minimize the equation resid-
ual plus vanishing regularization. The resulting optimality condition is solved by
a steepest descent evolution equation. The discretization employs finite elements
on unstructured grids conforming to the irregularity of a solution emerging near a
fold. Existence of minimizers is proved together with the convergence of minimiz-
ers with vanishing regularization to an Origami model, provided one exists with
the given boundary conditions.

1 Introduction
The purpose of this work is to develop a tool based upon partial differential

equations (PDEs) for investigating the existence of an Origami model satisfying
given boundary conditions. For instance, on the left in Fig. 9 below, prescribed
boundary conditions are emphasized as red curves, and the computed surface sat-
isfying these boundary conditions indicates the existence of an associated Origami
model.

To establish notation in the present context, let a flat paper be parameterized
by points x = (x,y) ∈ Ω = [0,1]2 ⊂ R2. Let the transformed paper be given by
the image of a mapping u = (u,v,w) : Ω→ R3. Such a mapping is modeled to be
locally rigid [Dacorogna et al. 10] in the sense that

∇u(x)>∇u(x) = I, x ∈Ω\Γ, ∇u(x) =

 ux(x,y) uy(x,y)
vx(x,y) vy(x,y)
wx(x,y) wy(x,y)

 (1)

where Γ is a possibly non-empty set of curves in Ω on which the paper may be
folded. Otherwise, a solution to (1) is smooth on Ω\Γ. It can be shown with (1)
that u(Ω) has Gaussian curvature zero, i.e., it is developable, but such a property
is not sufficient to guarantee all properties considered natural for folded or curved
paper. A locally rigid transformation preserves not only Gaussian curvature but
also lengths, angles and areas, since it is a local isometry [Dacorogna et al. 10].
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For the stated purpose of this work, the authors investigate the solvability of the
non-linear, first-order system of PDEs in (1) constrained by prescribed boundary
conditions for the paper edges,

u(x) = e(x), x ∈ ∂Ω. (2)

A well known approach to obtaining solutions to first-order PDEs is the method of
vanishing viscosity [Evans 10]. In the present context, this method would involve
including a term ε∆u in (1) and letting ε → 0. Here, ∆ denotes the Laplace opera-
tor, i.e., ∆u = ∂ 2

x u+∂ 2
y u. This method is used effectively for the apparently related

scalar Eikonal equation [Evans 10]. However, it is warned in [Dacorogna et al. 10]
that this approach cannot be applied to the system in (1) for Origami, and direct
calculations readily verify the claim. Therefore, the vanishing regularization con-
cept is applied here in a variational setting to avoid the limitations of the viscosity
method. The proposed approach is to minimize the following functional for ever
decreasing ε > 0,

J(u) =
∫

Ω

[
‖∇u(x)>∇u(x)− I‖2

F +2ε‖∇2u(x)‖2
F

]
dx (3)

under the constraint that u satisfy the boundary conditions (2). The first term
in (3) penalizes the equation residual for (1) using the squared Frobenius norm
‖ · ‖2

F, i.e., the sum of squares of matrix entries. The second term in (3) regular-
izes the minimizer of J by penalizing the sum of squares of all second-order partial
derivatives of u, v and w. On the basis of the condition that the directional derivative
satisfy ∂uJ(u; ū) = 0 at a minimizer u with arbitrary perturbations ū, it is shown
in Section 2 that a minimizer must satisfy the non-linear, fourth-order system of
PDEs, [(‖ux‖2−1)ux]x +[(‖uy‖2−1)uy]y +[((u>y ux)uy)x +((u>x uy)ux)y]− ε∆2u = 0

in Ω

u = e and ∂n∇u = 0 on ∂Ω.
(4)

Here, ∆2 denotes the biharmonic operator, i.e., ∆2u = ∂ 4
x u+ 2∂ 2

x ∂ 2
y u+ ∂ 4

y u. The
system (4) is then solved iteratively and for ever decreasing ε .

The authors have considered various approaches for the discretization of (4).
See [Ciarlet 02]. Finite differences are adequate, provided a fold conforms to a
grid line. A rather more complicated but advantageous alternative is to employ
finite elements on unstructured grids, which adapt to the irregularity of the solution
as ε→ 0. The finite element approach is explained in Section 3, and computational
results with this approach are shown in Section 4.

In Section 5 the paper concludes with theoretical results supporting the pro-
posed approach. Specifically, it is proved that for a fixed ε > 0 the functional J in
(3) always possesses at least one minimizer uε . A sufficiently regular minimizer
must of course satisfy the necessary optimality condition (4). Then it is proved
that as ε → 0, the minimizers uε converge to a solution u? of (1) and (2), pro-
vided there exists at least one sufficiently regular solution. There is no claim as
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to the uniqueness of such a solution. To relax the regularity assumptions in the
convergence theorem, future investigations are proposed based upon approaches in
mathematical image processing for dealing with edge sets.

2 The Optimality Condition
The system (4) is a necessary optimality condition on a minimizer u of J in (3),

and (4) is actually used to compute a minimizer. The necessary optimality condition
is derived here, and then an iterative procedure is presented for its solution.

For a prospective minimizer u with a perturbation ū, the directional derivative
of J in (3) is given by

∂uJ(u; ū) = lim
h→0

DhJ(u+hū) = 4
∫

Ω

[
(‖ux‖2−1)(u>x ūx)+(‖uy‖2−1)(u>y ūy)

+(u>x uy)(ū>x uy +u>x ūy)+ ε∇
2u : ∇

2ū
]

dx
(5)

where the last term is understood as the sum of all products of the respective
fourth-order partial derivatives of u and ū. A minimizing u has the property that
∂uJ(u; ū) = 0 must hold for all permissible perturbations ū. Since u must satisfy
fixed boundary conditions (2), and a perturbation may not disturb these conditions
on the boundary, the set of permissible perturbations consists of smooth functions
ū which vanish on the boundary ∂Ω. The properties of ū may be exploited by
integrating (5) by parts and assuming sufficient regularity of u to obtain,

1
4

∂uJ(u; ū) =
∫

∂Ω

ū>
[
nx(‖ux‖2−1)ux +ny(‖uy‖2−1)uy

]
dσ(x)

−
∫

Ω

ū>
[(
(‖ux‖2−1)ux

)
x +
(
(‖uy‖2−1)uy

)
y

]
dx∫

∂Ω

ū>
[
nx(uyu>y )ux +ny(uxu>x )uy

]
dσ(x)

−
∫

Ω

ū>
[(

(u>y ux)uy

)
x
+
(
(u>x uy)ux

)
y

]
dx∫

∂Ω

ε∇ū>∂n∇udσ(x)−
∫

∂Ω

εū>∂n∆udσ(x)

+
∫

Ω

εū∆
2udx.

(6)
Since ū = 0 holds on ∂Ω, the boundary integrals

∫
∂Ω

û>[· · · ]dσ(x) in (6) vanish.
Then ū may be chosen strategically so that all integrals in (6) are negligible except∫

∂Ω
∇ū>[ε∂n∇u]dσ(x). In this boundary integral ∂n∇u is constrained to be point-

wise zero by choosing ū further so that ∇ū is concentrated at an arbitrary point on
∂Ω. Thus, the boundary condition ∂n∇u = 0 on ∂Ω is obtained. Then only inte-
grals over Ω remain in (6), and ū may be chosen strategically to be concentrated
at an arbitrary point in Ω. Consequently, the sum of the respective integrands is
constrained to be pointwise zero in Ω. As a result, the optimality condition for a
minimizing u is given by (4).
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Since the left side of the differential equation in (4) can be viewed as a func-
tional representation of the negative gradient of J in (3), a steepest descent approach
to solving (4) is given by [(‖ux‖2−1)ux]x +[(‖uy‖2−1)uy]y +[((u>y ux)uy)x +((u>x uy)ux)y]− ε∆2u

= ut , in Ω× (0,∞)
u = e, ∂n∇u = 0 on ∂Ω× [0,∞) and u = u0 in Ω×{0}.

(7)
Here the variable t in u(x, t) corresponds to pseudo time, used only as a temporal
parameter indexing the course of the steepest descent evolution.

The qualitative properties of (7) can be gleaned by considering the model equa-
tion,  [(u2

x−1)ux]x− εuxxxx = ut , (x, t) ∈ (0,1)× (0,∞)
u(0, t) = 0, u(1, t) = 1, uxx(0, t) = uxx(1, t) = 0, t ∈ [0,∞)

u(x,0) = u0(x), x ∈ (0,1)

corresponding to the case that v = w = 0 and u = u(x, t). The steady state solution
is u∞(x) = x, so the difference ũ= u−u∞ satisfies the boundary conditions ũ(0, t) =
ũ(1, t)= 0 and ũxx(0, t)= ũxx(1, t)= 0. Now suppose that ε is sufficiently nontrivial
that the fourth-order term dominates the evolution. Then the evolution equation
ut = −εuxxxx is dissipative in the following sense. After integrating by parts and
using the boundary conditions for the difference ũ, it follows that

1
2

∂t

∫ 1

0
ũ2dx =

∫ 1

0
ũũtdx =

∫ 1

0
−ε ũxxxxũdx = · · ·=−ε

∫ 1

0
ũ2

xxdx < 0

i.e., the integrated difference
∫ 1

0 ũ2(x, t)dx is decreasing. On the other hand, sup-
pose that ε is small enough for the fourth-order term to be negligible, and assume
that u2

x − 1 ≈ κ > 0. Then the evolution equation ut = [κux]x is also dissipative,
i.e., after integrating by parts and using the boundary conditions for ũ,

1
2

∂t

∫ 1

0
ũ2dx =

∫ 1

0
ũũtdx =

∫ 1

0
ũ[κ ũx]xdx = · · ·=−

∫ 1

0
κ ũ2

xdx < 0.

Yet the same calculations show that for κ < 0 the evolution equation is accre-
tive, i.e., the integrated difference

∫ 1
0 ũ2(x, t)dx is increasing. Thus the dissipative

and accretive forces oppose each other. Provided the unstable accretive forces are
sufficiently balanced by the stable dissipative forces, a non-trivial steady state is
achieved. For ε > 0, the dissipative forces in (7) are always sufficient to establish a
stable evolution to the desired steady state which solves (4). Yet, for ever decreas-
ing ε , the convergence of these ε-dependent steady states requires the existence of
an Origami model associated with the prescribed boundary conditions.

The necessary optimality condition (4) and the associated steepest descent evo-
lution (7) are said to be posed in strong form because they presuppose sufficient
smoothness in the solution so that all the terms appearing in the respective systems
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are well defined. The finite difference method amounts to approximating deriva-
tives with difference quotients, and the method is well suited to a direct discretiza-
tion of the strong form of a PDE. As indicated in Section 1, finite differences are
adequate to solve (4) or (7), provided there are no folds or that a fold conforms to
a line in the grid used to discretize the spatial domain Ω. For more general cases,
it is necessary to employ a discretization method which can accommodate general
folds and a lack of regularity in the solution at a fold. The first step is to obtain a
weak form of the optimality condition (4) in which less smoothness is required of
u [Showalter 77]. For this, it is required directly that the directional derivatives in
(5) vanish for all permissible perturbations ū,

1
4 ∂uJ(u; ū) = a(u,u, ū) = 0, ∀ū smooth in Ω and ū = 0 on ∂Ω (8)

subject to the boundary conditions (2) where explicitly

a(u, û, ǔ) =
∫

Ω

[
(‖ux‖2−1)(û>x ǔx)+(‖uy‖2−1)(û>y ǔy)

+(u>x uy)(û>x ǔy + ǔ>x ûy)+ ε∇
2ǔ : ∇

2û
]

dx.
(9)

Then with
b(u, ū) =

∫
Ω

ū>udx (10)

the corresponding weak form of the steepest descent evolution (7) is given by

b(ut(t), ū) =−a(u(t),u(t), ū), ∀t ∈ [0,T ], ∀ū smooth in Ω and ū = 0 on ∂Ω

(11)
subject to the boundary conditions (2), i.e., u(x, t) = e(x), x ∈ ∂Ω, t ≥ 0. The
essence of the finite element method detailed in Section 3 is to approximate the
solution u and the permissible perturbations ū in (8) and (11) with the span of sim-
ple functions which can be computed easily and which can approximate a desired
solution with a desired accuracy.

3 Numerical Discretization with Finite Elements
To define a suitable basis of functions for approximating a solution to (8) or

(11), the spatial domain Ω is first triangulated. Let Ω be discretized into Delaunay
triangles {Te}E

e=1 with vertices taken from nodes {xn = (xn,yn)}N
n=1 ⊂ Ω where,

by definition of a Delaunay triangle, no node xn is inside the circumcircle of any
triangle Te. It is intended that nodes not only be scattered throughout the interior
of Ω and on ∂Ω but also that they be strategically located on and near a paper
fold to accommodate the associated lack of regularity in the solution to (7). Let
the temporal domain be discretized with nodes, tk = k∆t, k = 0, . . . ,Nt , ∆t = T/Nt ,
where T is the maximal time to which the system is solved.

Given the above triangulation of Ω, it suffices here to define the desired approx-
imation basis as the span of the piecewise linear functions {φn}N

n=1 where each φn
is (a) a linear polynomial on each element Te, (b) equal to 1 on the node xn and 0
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on every other node xm, m 6= n, and (c) globally continuous on Ω. In other words,
the plot of the function φn appears like a tent with its peak at xn, fastened to the
ground at all neighboring nodes and remaining on the ground outside the elements
Te with vertex xn. Given these tent functions, denote the approximation space by
SN(Ω) = span{φn}N

n=1 and denote by SN,0(Ω) the subspace of those functions in
SN(Ω) which vanish on the boundary ∂Ω.

To approximate a solution u = u(x) to the weak form (8) of the optimality
system, an element uN = uN(x) of the Cartesian product Sn(Ω)3 = Sn(Ω)×Sn(Ω)×
Sn(Ω) is used,

uN(x) =
N

∑
n=1

unφn(x), uN(xn)≈ u(xn).

To approximate a solution u = u(x, t) to the weak form (11) of the steepest descent
evolution, the terms above depend also upon k, i.e.,

uk
N(x) =

N

∑
n=1

uk
nφn(x), uk

N(xn)≈ u(xn, tk), k = 0, . . . ,Nt .

An approximate solution to the weak optimality system (8) is obtained through
a finite element approach by computing a function uN ∈ SN(Ω)3 satisfying

a(uN ,uN ,Φ) = 0, ∀Φ ∈ SN,0(Ω)3 (12)

subject to the discrete boundary conditions corresponding to (2),

uN(xn) = e(xn), xn ∈ ∂Ω. (13)

An approximate solution to the weak form (11) of the steepest descent evolution
is obtained through a finite element approach by computing functions {uk

N}
Nt
k=0 ⊂

SN(Ω)3 satisfying

b([uk+1
N −uk

N ]/∆t,Φ) =

−
[
a1(uk

N ,u
k+1
N ,Φ)+a2(uk

N ,Φ)+a3(uk
N ,u

k
N ,Φ)+a4(uk+1

N ,Φ)
]

∀Φ ∈ SN,0(Ω)3, k = 0, . . . ,Nt −1

(14)

subject to the discrete boundary conditions corresponding to (2),

uk
N(xn) = e(xn), xn ∈ ∂Ω, k = 0, . . . ,Nt (15)

where b is given in (10) and a in (9) has been decomposed according to

a(u, û, ǔ) = a1(u, û, ǔ)+a2(û, ǔ)+a3(u, û, ǔ)+a4(û, ǔ)

a1(u, û, ǔ) =
∫

Ω

[
‖ux‖2(û>x ǔx)+‖uy‖2(û>y ǔy)

]
dx

a2(û, ǔ) = −
∫

Ω

[
(û>x ǔx)+(û>y ǔy)

]
dx

a3(u, û, ǔ) =
∫

Ω

[
(u>x uy)(û>x ǔy + ǔ>x ûy)

]
dx

a4(û, ǔ) = ε

∫
Ω

[∇(P∇ǔ)] : [∇(P∇û)]dx
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where P in a4 is a projection into SN(Ω)6. If the right side in (14) were replaced
by the form a from (9) evaluated purely at the state uk

N known at time tk, then the
new state uk+1

N would be explicitly defined in terms of the old state uk
N by (14).

Such an explicit scheme would be easy and inexpensive to implement, but it is
not sufficiently stable. On the other hand, if the right side in (14) were replaced
by the form a evaluated purely at the state uk+1

N unknown at time tk+1, then the
new state uk+1

N would be only implicitly defined in terms of the old state uk
N by

(14). Such an implicit scheme would be stable but unnecessarily complex and
expensive to solve. The mixture of states uk

N and uk+1
N appearing in (14) provides

a balance of stability and limited overhead. Furthermore, once all terms with uk+1
N

are grouped together in a linear system L(uk
N)u

k+1
N = F(uk

N) with known L(uk
N) and

F(uk
N) depending upon uk

N , the coefficient matrix emerging on the left side of this
system of time stepping equations is symmetric and positive definite. This property
ensures the solvability of the time stepping system and that the step from uk

N to uk+1
N

is a descent direction for the minimization of J. A Newton method for solving (12)
has also been implemented and found in the present context to be less efficient than
the proposed time stepping especially with large time steps.

4 Computational Results
In this section examples are presented to demonstrate the results of the methods

proposed above. All computations were performed with Matlab.* What are not
shown in this section are examples in which boundary conditions (2) are imposed
which are known to be unfriendly to an Origami model so that no solution to (1)
exists satisfying these boundary conditions. In such cases, (4) is of course solvable
for ε > 0, but the solutions do not converge as ε→ 0. In each of the following cases,
an exact solution u? to (1) and (2) is known in advance, and the initial values u0
in (7) are determined by the following simple method of continuing the prescribed
boundary conditions (2) smoothly into the interior of Ω,{

∆u0 = 0 in Ω

u0 = e on ∂Ω.
(16)

The initial values can of course be chosen closer to the known solution, but (16) is
used to extend the boundary conditions into the interior of Ω as if no better estimate
of the solution were available.

4.1 Example 1
As seen in Fig. 3 below, this example corresponds to a paper curved to have a

parabolic profile. The prescribed boundary conditions are emphasized in red on the
left in Fig. 3. An exact solution to (1) and (2) is given as follows. First, u = u(x) is
chosen to solve the initial value problem,

u′(x)2 +[2σu(x)[1−2u(x)]′]2 = 1, x ∈ [0,1], u(0) = 0
*http://www.mathworks.com
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and the scaling constant σ is chosen so that u(1) = 1/2. Then

v = v(x) = 2σu(x)[1−2u(x)], w = w(y) = y.

It can be seen as follows that there is no other solution to (1) which satisfies the
same boundary conditions (2). The above solution can be described as an ensemble
of straight vertical lines, each of length one and connecting the edges prescribed at
the top and at the bottom. This is the only solution since any geodesic emanating
vertically from the bottom edge to connect with the top edge would have length
greater than the required value of one if it were not a straight line.

The triangulation of the unfolded paper is shown on the left in Fig. 1. Since
there is no fold, there is no accumulation of nodes to accommodate such a fold.
Fig. 2 shows the initial conditions for this example on the left, which are clearly

Figure 1: The triangulation for Examples 1-3 (left) and the triangulation for Exam-
ple 4 (right).

smoothed due to the initial use of (16). The middle plot of Fig. 2 shows the distri-

Figure 2: Initial shape (left), residuals (middle) and error (right) for Example 1.

bution of residual values for (1),

log10 ‖∇u>∇u− I‖F (17)
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which depart significantly from zero since the paper is initially smoothed. In partic-
ular, these residual values are especially large near the middle of the parabolic pro-
files on the boundary, and they are relatively smaller in the corners of the smoothed
paper where deformation is less. The plot on the right in Fig. 2 shows the pointwise
departure of the computed solution u from the known exact solution u?,

log10 ‖u−u?‖ (18)

and these values are also non-trivial, achieving a maximum in the center of the
smoothed paper.

After convergence of the iteration (14), the result shown in Fig. 3 is obtained.
The computed surface is shown on the left in Fig. 3, which can be seen to be quite

Figure 3: Final shape (left), residuals (middle) and error (right) for Example 1.

accurate based purely upon visual inspection. The middle plot in Fig. 3 shows the
residual values (17), which are at most 8.5 · 10−5. The right plot in Fig. 3 shows
the error values (18), which are at most 3.9 ·10−5.

4.2 Example 2
As seen in Fig. 5 below, this example corresponds to a paper folded once into

two equal pieces and each side of the folded paper is either parallel or perpendicular
to the fold. The prescribed boundary conditions are emphasized in red on the left
in Fig. 5. An exact solution to (1) and (2) is given as follows:

u = u(x) =
x
2
, v = v(x) =

√
3

2

{
x, x < 1/2

(1− x), x≥ 1/2, w = w(y) = y.

The fold is located at x = 1/2. The same argument as applied to Example 1 shows
for this example that there is no other solution to (1) satisfying the same boundary
conditions (2).

The triangulation of the unfolded paper is the same as that shown on the left in
Fig. 1 for Example 1. In particular, no additional nodes have been introduced near
the fold, which actually conforms to triangle edges along the line x = 1/2.
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Figure 4: Initial shape (left), residuals (middle) and error (right) for Example 2.

Fig. 4 shows the initial conditions for this example on the left, which are clearly
smoothed due to the initial use of (16). The middle plot in Fig. 4 shows the dis-
tribution of the residual values (17), which depart significantly from zero since the
paper is initially smoothed. The plot on the right in Fig. 4 shows the error values
(18), which are also non-trivial, achieving a maximum along the paper fold.

After convergence of the iteration (14), the result shown in Fig. 5 is obtained.
The computed surface is shown on the left in Fig. 5, which can be seen to be quite

Figure 5: Final shape (left), residuals (middle) and error (right) for Example 2.

accurate based purely upon visual inspection. The middle plot in Fig. 5 shows the
residual values (17), which are at most 5.8 ·10−6, and such values are found along
the fold. The right plot in Fig. 5 shows the error values (18), which are at most
1.5 ·10−4, as observed adjacent to the paper fold.

4.3 Example 3

As seen in Fig. 7 below, this example corresponds to a paper folded diagonally
once into two equal and triangular pieces, and the fold connects opposite corners
of the paper. The prescribed boundary conditions are emphasized in red on the left
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in Fig. 7. An exact solution u = (u,v,w) to (1) and (2) is given as follows:

u(x,y) =

 x
y
0

 , y≤ 1− x, u(x,y) =

 1
2 (x+1− y)
1
2 (y+1− x)
1√
2
(x+ y−1)

 , y≥ 1− x.

It can be seen as follows that there is no other solution to (1) which satisfies the
same boundary conditions (2). Consider one of the triangles formed by the fold in
the solution above. Points on opposite sides of and at an equal distance ` from the
right angle in the triangle are separated by a distance

√
2` in the paper. This is the

only solution since any geodesic connecting such points would have length greater
than the required value of

√
2` if it were not a straight line.

The triangulation of the unfolded paper is the same as that on the left in Fig. 1
for Example 1. In particular, no additional nodes have been introduced near the
fold, which actually conforms to triangle edges along the line y = 1− x.

Fig. 6 shows the initial conditions for this example on the left, which are clearly
smoothed due to the initial use of (16). The middle plot in Fig. 6 shows the distribu-

Figure 6: Initial shape (left), residuals (middle) and error (right) for Example 3.

tion of residual values (17), which depart significantly from zero since the paper is
initially smoothed. In particular, these residual values are especially large near the
smoothed fold and they are relatively smaller in the corners of the smoothed paper
where deformation is less. The plot on the right in Fig. 6 shows the error values
(18), and these values are also non-trivial, achieving a maximum in the smoothed
fold of the paper.

After convergence of the iteration (14), the result shown in Fig. 7 is obtained.
The computed surface is shown on the left in Fig. 7, which can be seen to be quite
accurate based purely upon visual inspection. The middle plot in Fig. 7 shows the
residual values (17), which are at most 9.8 · 10−6 along the fold. The right plot in
Fig. 7 shows the error values (18), which are at most 2.6 ·10−4 adjacent to the fold.

4.4 Example 4
As seen in Fig. 9 below, this example corresponds to a paper folded in a curved

fashion to create two adjoining circular cylinders. The prescribed boundary con-
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Figure 7: Final shape (left), residuals (middle) and error (right) for Example 3.

ditions are emphasized in red on the left in Fig. 9. The example is taken from
[Geretschläger 09]. An exact solution to (1) and (2) is given as follows. First, u(y)
is chosen to solve the initial value problem,

u′(y)2 +[σ
√

u(y)[2/π−u(y)]
′
]2 = 1, y ∈ [0,1], u(0) = 0

and the scaling constant σ is chosen so that u(1) = 2/π holds. Then for πx ≤
sin(πy),

u = u(y), v = v(x) = x, w = w(y) = σ
√

u(y)[2/π−u(x)]

and for πx≥ sin(πy),

u = u(y), v = v(y) = s
√

u(y)[2/π−u(y)], w = w(x) = x.

On the basis of computational results shown below, one concludes that there is
no other solution to (1) satisfying the same boundary conditions (2), but no theo-
retical argument is presented here.

The triangulation of the paper is shown on the right in Fig. 1. Note that this
triangulation is identical to that used in the previous examples except that for this
example additional nodes are accumulated along and near the curved fold.

Fig. 8 shows the initial conditions for this example on the left, which are clearly
smoothed due to the initial use of (16). The middle plot in Fig. 8 shows the distri-
bution of residual values (17), which depart significantly from zero since the paper
is initially smoothed. In particular, these residual values are especially large on the
side of the paper nearest the curved fold, and they are relatively smaller in the cor-
ners of the paper farthest away from the fold where deformation is less. The plot on
the right in Fig. 8 shows the error values (18), and these values are also non-trivial,
achieving a maximum in the smoothed fold of the paper.

After convergence of the iteration (14), the result shown in Fig. 9 is obtained.
The computed surface is shown on the left in Fig. 9, which can be seen to be quite
accurate based purely upon visual inspection. The middle plot in Fig. 9 shows that
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Figure 8: Initial shape (left), residuals (middle) and error (right) for Example 4.

Figure 9: Final shape (left), residuals (middle) and error (right) for Example 4.

the residual values (17) are at most 2.4 ·10−3 especially in the points where the fold
meets the corners. The right plot in Fig. 9 shows the error values (18), which are at
most 4.8 ·10−4, especially away from the fold.

5 Existence and Convergence of Minimizers
5.1 Existence of Minimizers for Fixed Regularization

The existence of minimizers for the functional J in (3) for fixed ε > 0 will first
be established. For this purpose, function spaces must be introduced to make the
notion of existence precise. Particular use is made of the Sobolev spaces Hm(Ω)
consisting of functions having weak partial derivatives up to order m which lie
in the space L2(Ω) of Lebesgue measurable and square integrable functions. Also,
Hm

0 (Ω) is roughly the subspace of Hm(Ω) consisting of functions whose derivatives
up to order m− 1 vanish on ∂Ω. The norm on L2(Ω) is denoted by ‖ · ‖L2(Ω).
The norm on Hm(Ω) is denoted by ‖ · ‖Hm(Ω), including the sum of squares of the
L2(Ω) norm of weak derivatives up to order m. The seminorm | · |Hm(Ω) includes
the sum of squares of the L2(Ω) norm of weak derivatives precisely of order m.
See [Adams 75] for further details.
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For the vector-valued functions appearing in this work, the corresponding
Sobolev spaces are Cartesian products of the usual Sobolev spaces, e.g., H2(Ω)3 =
H2(Ω)×H2(Ω)×H2(Ω). Thus, the functional J of (3) is defined on DJ = {u ∈
H2(Ω)3 : u satisfies (2)}.

Theorem 1. Suppose DJ is not empty. Then there exists at least one uε ∈DJ which
minimizes J in (3) over the set DJ .

Proof. Let {uk}∞
k=1 be a minimizing sequence for J in (3), i.e.,

J(uk+1)≤ J(uk), lim
k→∞

J(uk) = inf
u∈DJ

J(u).

Using the decomposition J(u) = J1(u)+2εJ2(u)

J1(u) =
∫

Ω

‖∇u(x)>∇u(x)− I‖2
Fdx, J2(Ω) =

∫
Ω

‖∇2u(x)‖2
Fdx = |u|2H2(Ω)

it is seen that the sequence {uk}∞
k=1 is bounded in the seminorm of H2(Ω)3,

|uk|2H2(Ω)3 = J2(uk)≤ J(uk)/(2ε)≤ J(u1)/(2ε).

Setting ůk = uk−u1 it follows that ůk vanishes on ∂Ω and hence ůk ∈ H2(Ω)3 ∩
H1

0 (Ω)3. On the set of such functions, the H2(Ω)3 norm and seminorm are equiva-
lent [Adams 75], i.e., there exist constants c1 and c2 such that

c1|u|H2(Ω)3 ≤ ‖u‖H2(Ω)3 ≤ c2|u|H2(Ω)3 , ∀u ∈ H2(Ω)3∩H1
0 (Ω)3.

Thus, the sequence {uk}∞
k=1 is bounded in the norm of H2(Ω)3,

‖uk‖H2(Ω)3 = ‖u1 + ůk‖H2(Ω)3 ≤ ‖u1‖H2(Ω)3 +‖ůk‖H2(Ω)3 ≤
‖u1‖H2(Ω)3 + c2|ůk|H2(Ω)3 = ‖u1‖H2(Ω)3 + c2|uk−u1|H2(Ω)3 ≤

‖u1‖H2(Ω)3 + c2[|uk|H2(Ω)3+|u1|H2(Ω)3 ]≤ (1+c2)‖u1‖H2(Ω)3 + c2
√

J(u1)/(2ε).

Hence, there is a subsequence, again denoted for convenience by {uk}∞
k=1, which

converges weakly in H2(Ω)3 to some uε ∈ H2(Ω)3 [Adams 75]. Since H2(Ω)3 is
compactly embedded in H1(Ω)3 [Adams 75], there is a subsequence, again denoted
for convenience by {uk}∞

k=1, which converges strongly in the norm of H1(Ω)3 to
uε . It will be shown that uε is a minimizer,

inf
u∈DJ

J(u)≤ J(uε)≤ lim
k→∞

J(uk) = inf
u∈DJ

J(u)

by showing that J1 is continuous on H1(Ω)3 and that J2 is weakly lower semi-
continuous on H2(Ω)3, i.e., uk → uε in H1(Ω)3 implies J1(uk) → J1(uε) and
uk ⇀ uε in H2(Ω)3 implies J2(uε) ≤ J2(uk). Since J2 is the same as the semi-
norm on H2(Ω)3, the stated property for J2 is well known [Adams 75]. To show
the continuity of J1, a direct calculation for ǔ, û ∈ H1(Ω)3 gives

‖∇ǔ>∇ǔ− I‖2
F−‖∇û>∇û− I‖2

F
= [(∇ǔ−∇û)>∇ǔ+∇û>(∇ǔ−∇û)] : (∇ǔ>∇ǔ+∇û>∇û−2I)
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showing that the difference J1(ǔ)− J1(û) can be estimated according to

|J1(ǔ)− J1(û)| ≤ ‖ǔ− û‖H1(Ω)3×
(‖ǔ‖H1(Ω)3 +‖û‖H1(Ω)3)(‖ǔ‖2

H1(Ω)3 +‖û‖2
H1(Ω)3 +6|Ω|)

and the continuity of J1 on H1(Ω)3 follows.

5.2 Convergence of Minimizers for Vanishing Regularization
The convergence of minimizers uε for the functional J in (3) as ε→ 0 will now

be established. An approach to relaxing the restrictive assumption that there exists
a sufficiently smooth u† satisfying (1) and (2) is presented in the next subsection.

Theorem 2. Suppose there is a u† ∈ H2(Ω)3 satisfying (1) and (2). Then the
minimizers uε of J in (3) converge weakly in H2(Ω)3 as ε→ 0 to some u? ∈H2(Ω)3

satisfying (1) and (2).

Proof. Recall the decomposition J(u) = J1(u) + 2εJ2(u) from the proof of the
previous theorem. Since u† satisfies (1) and (2), it follows that J1(u†) = 0. Since J
is minimized by uε , it follows that

J1(uε)+2εJ2(uε) = J(uε)≤ J(u†) = 2εJ2(u†).

Taking J2(uε)≤ J2(u†) from this inequality gives

|uε |2H2(Ω)3 = J2(uε)≤ J2(u†) = |u†|2H2(Ω)3 .

Setting ůε = uε −u† it follows that ůε vanishes on ∂Ω and hence ůε ∈ H2(Ω)3 ∩
H1

0 (Ω)3. As indicated in the proof of the previous theorem, the H2(Ω)3 norm and
seminorm are equivalent on the set of such functions [Adams 75]. Hence, the
sequence {uε}ε>0 is bounded in the norm of H2(Ω)3,

‖uε‖H2(Ω)3 = ‖u† + ůε‖H2(Ω)3 ≤ ‖u†‖H2(Ω)3 +‖ůε‖H2(Ω)3

≤ ‖u†‖H2(Ω)3 + c2|ůε |H2(Ω)3 = ‖u†‖H2(Ω)3 + c2|uε −u†|H2(Ω)3

≤ ‖u†‖H2(Ω)3 + c2|uε |H2(Ω)3 + c2|u†|H2(Ω)3 ≤ (1+2c2)‖u†‖H2(Ω)3 .

Thus, there is a subsequence, again denoted for convenience by {uε}ε>0, which
converges weakly in H2(Ω)3 to some u? ∈ H2(Ω)3 [Adams 75]. Since H2(Ω)3 is
compactly embedded in H1(Ω)3 [Adams 75], there is a subsequence, again denoted
for convenience by {uk}∞

k=1, which converges strongly in the norm of H1(Ω)3 to
u?. As indicated in the proof of the previous theorem, J1 is continuous on H1(Ω)3

and therefore, taking J1(uε)≤ 2ε|u†|H2(Ω)3 from the first inequality of the proof,

J1(u?)
0←ε←− J1(uε)≤ 2ε|u†|H2(Ω)3

ε→0−→ 0.

It follows that J1(u?) = 0, and hence u? satisfies (1). Furthermore, according to the
property of trace boundary values [Adams 75], it follows from

‖u?−uε‖L2(∂Ω)3 ≤ c‖u?−uε‖H1(Ω)3
ε→0−→ 0

that u? satisfies (2) since every uε does.
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5.3 Relaxing Regularity Assumptions
The assumption for the convergence theorem that there exists at least one u† ∈

H2(Ω)3 satisfying (1) and (2) rules out that u† may be irregular enough for the
paper to be folded. Nevertheless, computations show that the desired convergence
may still be expected. Based upon the success of the Mumford-Shah functional for
capturing edges in image processing [Mumford and Shah 89], the authors speculate
that incorporating the set Γ of folds directly into the functional, e.g., as follows,
may be beneficial for Origami,

J(u,Γ) =
∫

Ω\Γ
‖∇u(x)>∇u(x)− I‖2

Fdx+2ε

∫
Ω

‖∇2u(x)‖2
Fdx+µ|Γ|.

Here, the first integral is calculated only over the set Ω\Γ, and |Γ| denotes roughly
the total length of all folds. The second integral is calculated over the whole set Ω in
order to maintain the continuity of u as ε→ 0. Since the coefficients of the second-
order operator in (4) become negligibly small near a fold in the computational
setting, as can be seen from the residual values (17) in Section 4, the effect of the
set Γ is damped in practice. Therefore, it may be that the incorporation of Γ into
the functional proposed above is purely of theoretical benefit.
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